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Abstract 

The computer and telecommunication industries rely heavily on knowledge-based expert systems to manage the 
performance of their networks. These expert systems are developed by knowledge engineers, who must first 
interview domain experts to extract the pertinent knowledge. This knowledge acquisition process is laborious and 
costly, and typically is better at capturing qualitative knowledge than quantitative knowledge. This is a liability, 
especially for domains like the telecommunication domain, where enormous amounts of data are readily available 
for analysis. Data mining holds tremendous promise for the development of expert systems for monitoring 
network performance since it provides a way of automatically identifying subtle, yet important, patterns in data. 
This case study describes a project in which a temporal data mining system called Time weaver is used to identify 
faulty telecommunication equipment from logs of network alarm messages. 

 
 

Introduction 
One such expert system is AT&T’s ANSWER system (Weiss, Ros and Singhal 1998). 

ANSWER (Automated Network Surveillance with Expert Rules) is responsible for monitoring 
the 4ESS switches that route the majority of the traffic in the AT&T network. When a 
component within a switch experiences a problem, the switch generates an alarm and forwards it 
to one of AT&T’s two technical control centers. At the technical control center, the alarm is 
inserted into a relational database and forwarded to ANSWER.   ANSWER then analyzes the 
alarm using rules acquired from domain experts. If ANSWER determines that the alarm requires 
some action be taken, it forwards an alert describing the problem to a technician for further 
processing. Because the 4ESS switches in the AT&T network generate in excess of 100,000 
alarms per week, it is critical that alarms corresponding to non-recurring transient problems be 
filtered so they do not result in an alert. One of the most important functions of ANSWER is to 
distinguish between recurring and non-recurring faults. 

A key business goal of ANSWER is to minimize the number of service affecting incidents— 
such as blocked or lost calls—while keeping development, personnel and maintenance costs at an 
acceptable level. Unfortunately, expert systems such as ANSWER require the use of highly 
trained knowledge engineers to extract knowledge from domain experts and to encode the 
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knowledge in a useable form. This knowledge acquisition process is time-consuming and 
expensive, and often does not capture important quantitative relationships. For example, a human 
expert may know that the occurrence of several type-A messages indicates a problem, but may 

not know specifically how many should be required, or within what time interval, before action is 
required. Data mining offers an intriguing solution, by making it possible to acquire knowledge 
directly from the network alarm data. The data-mining task in this case study is to identify 
patterns in network alarm logs that can be used to predict telecommunication equipment failures. 
These patterns can then be incorporated as rules into the existing ANSWER system. 

The data mining team for this project was comprised of a single individual who was familiar 
with the telecommunication domain through previous involvement with the ANSWER system. 
The project took approximately two years, of which most of the time was spent developing new 
data mining software. 

 

The KDD Process 

The KDD process employed in this case study is very similar to the process used in many other 
projects. The steps in this process, as they relate to our project, are described in this section. 

 

Understanding the Data Mining Problem 

The first step in the process involves gaining an understanding of the application domain and the 
goals of the KDD task. In this case, such an understanding had been acquired through previous 
work on the ANSWER expert system. The goal of the project was also influenced by a previous 
effort that attempted to use data mining techniques to predict catastrophic failures of 4ESS 
switches (Weiss, Eddy and Weiss 1998). A catastrophic failure is one in which the functioning of 
the entire 4ESS switch is compromised. The previous effort was seriously hampered by the rarity 
of catastrophic failures—only 50 such failures had been recorded and were available for study. 
Because of this experience, and because we wanted our results to be more widely applicable, we 
focused on the more general goal of predicting individual component failures. 

The data mining task, as described in the previous section, is not well defined since neither the 
term “prediction” nor “pattern” were defined. To be meaningful, a prediction must apply to a 
specific time period. A prediction of a component failure is said to be correct if and only if the 
prediction occurs more than warning time and less than monitoring time before the actual failure. 
For example, given a warning time of one minute and a monitoring time of eight hours, a 
prediction must occur between one minute and eight hours prior to the actual failure for the 
failure to be considered successfully predicted. The warning time parameter ensures that there is 
sufficient time to respond to a failure prediction prior to the actual failure and the monitoring time 
parameter allows the user to control the specificity of the prediction. A prediction is “issued” if 
one of a pre-specified set of patterns (i.e., patterns identified by the data mining process) occurs 
in the stream of alarms coming from the 4ESS switch. 

Patterns are described using a pattern language developed for this project. Key features of this 
language were identified based on knowledge of the telecommunication domain. First, because 
alarms can be generated as a result of unrelated problems, the pattern language must provide a 
way of specifying a pattern so that the presence of an alarm does not prevent a pattern from 
matching. Secondly, because a fault may manifest itself in slightly different ways at different 
times—perhaps due to different activity occurring outside of the faulty component—there must 
be a way of specifying a pattern without fixing the order of all alarms within the pattern. Finally, 
because time is such an important factor, and because the behavior of the system will change in 
response to a fault, it must be possible to associate a time period with each pattern. Given these 
three requirements, it should be possible to specify the pattern “3 type-A alarms and 2 type-B 

alarms occur, in any order, within a 5 minute period”. The pattern language is described in 
additional detail later in this chapter. 
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Selecting a Target Dataset 

The target dataset was formed by collecting two weeks worth of alarms from the database at one 
of the two technical control centers. The resulting dataset contained 148,886 alarms, where each 
alarm contained approximately 20 variables. Based on knowledge of the domain and what 
variables are most important for diagnosis, five variables were selected to describe each alarm. 
These variables are 1) the time the alarm was generated, 2) a unique identifier for the device 
associated with the alarm, 3) the type of device, 4) the diagnostic code associated with the alarm, 
and 5) the severity of the alarm. Thus, an alarm is represented by the tuple <time, device-id, 
device-type, diag-code, severity>. There are several dozen types of devices in a 4ESS switch, 
hundreds of diagnostics codes, and three severity levels (warning, minor, and major).   Because 
the 4ESS switch recognizes component failures and automatically generates alarms for such 
failures, no additional effort was required in order to record these failures in the alarm stream. 

 

Preprocessing and Transforming the Data 

Components can fail for a variety of reasons. Because there is no need to distinguish between 
different types of failures, the various failure alarms were replaced with a common failure alarm. 
Also, because routine maintenance testing will cause failed components to generate additional 
failure alarms, a simple software program was applied to the target dataset to prune the 
“redundant” failure alarms. The resulting dataset yielded 1045 failure alarms corresponding to 
1045 distinct component failures. The data mining task is then to predict these failure alarms. 

 

Data Mining 

The next major step in the KDD process involves selecting the data mining task and the algorithm 
to be applied. For this project, the data mining task is clearly a prediction task. Because each 
alarm record represents an event—an observation that occurs at a specific instant in time—we 
refer to this as an event prediction task. A temporal data mining algorithm is required because the 
dataset contains events, not examples, and because predicting component failures will require the 
identification of temporal relationships in the data. Other important considerations in selecting a 
data mining method include the fact that the component failures are rare and known to be difficult 
to predict. Given these characteristics, the data mining algorithm may need to find patterns that 
occur very infrequently in the data and have relatively low predictive accuracy—perhaps well 
below 50%. Most data mining methods are not well suited to problems with these characteristics. 
The genetic-based data mining algorithm developed to solve this data mining task is described in 
later in this chapter. 

 

Interpretation of Results 

The data mining algorithm produces a set of patterns for predicting component failures (i.e., each 

pattern x can be viewed as a rule of the form “x  device failure”). Recall and precision values 
are computed for each pattern. For this domain, a pattern’s recall is the percentage of the total 
component failures that it predicts and its precision is the percentage of times a prediction is 
correct. Note that if we were to view these patterns/rules as association rules, then recall 
corresponds to support and precision to confidence. 

To help select the most appropriate subset of the generated patterns, our data mining software 
orders the patterns from most to least precise and then uses this ordering to generate a 
precision/recall curve. This curve is generated by viewing the most precise pattern as a solution, 
the two most precise patterns as another solution, etc., and then plotting the precision and recall 
for each solution.   Such a precision/recall curve is shown later in Figure 1. Each point on the 
curve can then be evaluated given the cost of a component failure that is not predicted (false 
negative), the cost of incorrectly diagnosing a component as going to fail (false positive) and the 
value of correctly identifying a failure (true positive). If these values are all known, the optimal 
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point on the curve can be determined. For this domain, as for most domains in the real world, 
these costs are not precisely known. In this case, these values may be estimated. Alternatively, 
several of the solutions can be given to a domain expert, who could then choose the most 
attractive solution based on the precision and recall values. 

The KDD process is an iterative process and it is common to use results as feedback into earlier 
stages in the KDD process.   In this project the warning and monitoring times are parameters to 
the data mining software, and preliminary results were used as feedback to modify these 
parameter values. The values selected for evaluation were partly based on the “sensitivity” of the 
results to these parameters. For example, if a small increase in the monitoring time significantly 
improved our ability to correctly predict a failure, then we explored additional points in this 
neighborhood. This exploration also provided insight into the nature of the prediction problem. 
For example, as is shown later, decreasing the warning time enables much better predictions to be 
made. This indicates that there is information useful for predicting failures that occurs shortly 
before the actual failure. 

 

Consolidating Knowledge 

The final step involves consolidating the discovered knowledge. This was accomplished by 
documenting and distributing the key results. More importantly, these results were then to be 
incorporated into the ANSWER expert system in the form of rules. Changes were proposed but 
were not carried out because of a decision, unrelated to this effort, to dramatically change the way 
the 4ESS switches were monitored. 

 

The Data Mining Algorithm 

The data mining task requires an algorithm that can identify predictive sequential and temporal 
patterns in the network alarm data. Because existing methods and software packages were not 
suitable for performing this task, we developed the Timeweaver data mining software package 
(Weiss 1999). Timeweaver is a genetic-based data mining system that evolves populations of 
prediction patterns in order to solve event prediction problems. The decision to utilize a genetic 
algorithm was based on several factors. One important consideration was that most existing 
methods are not readily applicable to our data mining task. For example, rule and decision tree 
learners are not suited to the task because they operate on classified examples, whereas our task 
involves streams of events. The requirement to find patterns between events caused us to 
consider methods that could search directly in the space of possible patterns. Given the nature of 
the data mining task and the requirements on the pattern language, the space of possible patterns 
is enormous. Given the difficulty of the prediction task and our belief that it is the relationship 
between alarms that is critical in identifying faults, we felt that a greedy algorithm would not 
sufficiently explore the search space. For these reasons a genetic algorithm was chosen—a 
method that is widely known for its ability to efficiently search through large search spaces. 

The first issue in designing a genetic algorithm is how to encode each individual in the 
population. In this case, each individual represents a pattern. Patterns in Timeweaver are 
represented as a sequence of pattern-events, where each pattern-event roughly corresponds to an 
event in the data set (i.e., an alarm in the context of this project). Patterns also have the following 
extensions: 

 the feature values in each pattern-event may take on a wildcard value, 

 ordering constraints are specified between successive pattern-events in the pattern, and 

 a pattern duration is associated with each pattern 

A pattern matches a sequence of events if: 1) each pattern-event in the pattern matches an event 
in the sequence, 2) the ordering constraints specified in the pattern are obeyed, and 3) all events 
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involved in the match occur within a time period that does not exceed the pattern duration. For 
this telecommunication domain, each pattern-event is of the form <device-id, device-type, diag- 
code, severity>. A sample pattern, generated by Timeweaver, is: “351:<id20, TMSP,?, Major> * 

<id20, TMSP, ?, Major> *<id20, TMSP, ?, Minor>”. This pattern is matched if, on the same TMSP 
device, two major alarms occur, followed by a minor alarm, all within 351 seconds. The “?” 
represents a wildcard, indicating that the diagnostic code does not matter, and the “*” represents 
the after constraint, which specifies the relative ordering of the events. Note that the presence of 
other alarms in the alarm stream will not prevent this pattern from matching. 

New patterns are generated by combining existing patterns using a crossover operator or by 
modifying existing patterns via a mutation operator. The patterns selected for combination and 
mutation are selected proportional to their fitness. The fitness of the prediction pattern is based 
on both its precision and recall and is computed using the F-measure, defined in equation 1, 
where • controls the importance of precision relative to recall. 

( 
2 

+ 1) precision  recall 
Fitness = 

 
 

 
2 

precision + recall 
(1) 

Any fixed value of • was found to lead to poor performance of the genetic algorithm, so the 
value of • is continuously varied between 0 and 1. This allows “specific” patterns, with high 
precision and low recall, to evolve, as well as “general” patterns, with high recall but low 
precision. Over time, patterns evolve that tend to do well with respect to both measures, although 
some of the general and specific patterns will continue to remain in the population. By 
employing both precision and recall in the fitness function the genetic algorithm is able to find 
patterns that perform well at predicting rare events. Had we only used precision in the fitness 
function, then the genetic algorithm would have quickly converged to a few extremely specific 
patterns, and most of the search space would have remained unexplored.   The details of the 
genetic algorithm are described in Weiss (1999). The interested reader may find a general 
introduction to genetic algorithms in Mitchell (1998) and Goldberg (1989). 

 

Results 

The target dataset was split into disjoint training and test sets by placing all alarms associated 
with 70% of the 4ESS switches into the training set and the remaining alarms into the test set. 
Timeweaver was applied to the training set and the “mined” patterns were then evaluated on the 
test set. Figure 1 displays the precision/recall curves generated when the monitoring time is held 
constant at eight hours while the warning time is varied. As expected, the precision of the 
predictions decreases as the recall of the predictions increases. The figure demonstrates that the 
performance of the rules is heavily affected by the warning time parameter—the shorter the 
warning time the better the predictions. This indicates that the alarms that occur near the actual 
failure are especially useful in predicting the failure. The mined patterns are not listed since they 
are only meaningful to a domain expert. However, each curve was formed from approximately 
thirty patterns, most of which contain 3-5 pattern-events. 
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Figure 1: Predictive Performance of Prediction Patterns 

 

Alternative Approaches and Related Work 

Other approaches toward solving the data mining task were considered. Most of these 
approaches involve reformulating the event prediction problem into a classification problem by 
transforming the event sequence data into classified examples (Dietterich and Michalski 1985). 
These approaches typically involve sliding a window over the data. Events that fall within the 
window are encoded as a single, fixed-length example. The example is classified based on the 
proximity of the events in the window to the event to be predicted.   A drawback of this approach 
is that some sequence and temporal information is inevitably lost in the transformation process— 
and a-priori we do not know what information is important to preserve. However, one advantage 
of this approach is that a wealth of existing classification methods can be applied once the 
transformation has been performed. This approach was evaluated on the telecommunication 
prediction problem. The network alarm data was transformed into classified examples using a 
sliding window and the resulting examples were then fed into C4.5 (Quinlan 1993) and RIPPER 
(Cohen 1995), two popular classification systems. The learned rules were not competitive with 
those generated by Timeweaver (Weiss and Hirsh 1998), most likely because of the limited 
amount of sequential and temporal information that was preserved in the transformation process. 
A similar transformation-based approach, but with a more sophisticated encoding scheme, was 
employed by Weiss, Eddy and Weiss (1998) to predict catastrophic 4ESS failures and by 
Sasisekharan, Sesahdri and Weiss (1996) to identify chronic network problems. 

A very different data mining approach has also been used to analyze network alarm data. The 
Telecommunication Network Alarm Sequence Analyzer (TASA) uses specialized data mining 
algorithms to formulate rules that describe frequently occurring patterns in sequences of network 
alarms (Hätönen, Klemettinen, Mannila, Ronkainen, and Toivonen 1996). These rules have been 
used to filter redundant alarms, locate network problems and predict network faults.   However, 
the common patterns identified by TASA will not necessarily be useful for prediction. In fact, for 
our specific data mining task, where the event to be predicted is rare, it is extremely unlikely that 
common patterns in the alarm data would be helpful in predicting the component failures. 
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